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1. Introduction 
 
For economic studies using quarterly data, a low number of 
observations can cause serious flaws in the quality of quantitative 
analysis. In vector autoregressions (VAR) with relatively short 
time series for example, many degrees of freedom are used up in 
the estimation, reducing drastically its power. Moreover, monthly 
frequency is sometimes implied by the assumptions of the model 
to be estimated, while only quarterly data are released3. 
 
Therefore, economists are sometimes forced to use variables that 
proxy GDP and that are available at a higher frequency. In many 
countries, a common proxy is industrial production (IP) which is 
often recorded at monthly frequency. In Switzerland, it is difficult 
                                                           
1 Nicolas A. Cuche, University of Cali fornia, Department of Economics, 549 
Evans Hall #3880, 94720 CA Berkeley, USA, http://cuche.net, Martin K. Hess, 
Instituto Tecnológico Autónomo de México, Departamento Académico de 
Administración, Av. Camino a Santa Teresa #930, Col. Héroes de Padernia, 
C.P.10700 Del. Magdalena Contreras, México, D.F., México, mhess@itam.mx. 
2 We thank Ramses Abul Naga, Marlene Amstad, Phili ppe Bacchetta, Harris 
Dellas, Christoph Eisenring, Giovanni Leonardo, Iwan Meier, Jeff rey Nilsen, 
Bruno Parnisari, Michael Rockinger, Walter Wasserfallen, Mark Watson, and 
seminar participants at the University of Lausanne for their helpful comments 
and suggestions. 
3 The off icial quarterly GDP figures for Switzerland are interpolated and 
published by the State Secretariat for Economic Affairs. Furthermore, an 
off icial annual GDP is calculated by the Federal Statistics Off ice producing the 
national income accounts. The quarterly estimates are then corrected and 
published again to match the off icial annual statistics. 

Abstract. We estimate deseasonalized 
monthly series for Swiss Gross Domestic 
Product at constant prices of 1990 for 
the period 1980-1997. They are 
consistent with the quarterly figures 
estimated by the State Secretariat for 
Economic Affairs and obtained by 
including information contained in 
related series. We present a general 
approach using the Kalman filter 
technique nesting a great variety of 
interpolation setups. We evaluate 
competing models and provide a time 
series that can be used by other 
researchers.  
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to find such a monthly indicator for aggregate productive activity. 
The IP index is a series at a quarterly frequency, and other series 
like business surveys or filled orders can only be used as GDP 
proxies with some reservations. Hence, in cases where adequate 
proxies are not at hand, monthly estimates of GDP by 
interpolation can provide a solution to this problem4. 
 
Whether to replace a proxy variable by an interpolated one or not 
depends on the available data series and on the empirical 
economic model considered. The evaluation of the trade-off 
between potential benefits and disadvantages of both approaches 
is beyond the scope of this paper and is omitted. Our goal is to 
provide a monthly deseasonalized real GDP series for empirical 
research. 
 
Chow and Lin (1971) were the first to present a coherent and 
easily applicable econometric approach that handles interpolation 
problems for stock and flow variables. Assuming a linear relation 
between the series of interest (series for which observations are 
missing, i.e. monthly GDP) and other data with more frequent 
recording (related series), they estimate a univariate regression 
equation. This multiple regression approach is flexible enough to 
take into account heteroscedasticity and low-order autocorrelation 
in the residuals. More recent studies make use of the Kalman filter 
(Harvey and Pierse (1984) and Bernanke, Gertler and Watson 
(1997)). This dynamic and flexible framework is capable of 
nesting more models than the Chow and Lin framework. 
 
Here, we focus on econometric issues such as stationarity and 
cointegration in different Kalman filter configurations. Recent 
innovative techniques are analyzed theoretically and then 
evaluated empirically. We provide an overview of estimated 
monthly GDP series produced by various model setups. Then, we 
evaluate different combinations of methods and related series with 
the aim to get the most appropriate monthly GDP. For this task, 
several selection criteria as well as a simulated interpolation from 
annual to quarterly data are used. 
 
                                                           
4 Unlike other studies (e.g. Chow and Lin (1971)) our terminology does not 
distinguish between interpolation and distribution depending on whether stock 
and flow variables are used. The presented models exclusively serve for in-
sample interpolations and not for out-of-sample predictions. 
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Before estimating the model, we evaluate competing related series. 
We identify the series containing the highest amount of 
information for the interpolation. The choice criteria for the 
related monthly series are based on the expenditure definition of 
GDP and on statistical properties of the comovement with GDP. 
However, the dearth of Swiss data at higher frequency limits 
severely the choice of these variables. Therefore, we consider 
other related series, for example foreign aggregate economic 
activity, as alternatives for interpolation. In fact, all related series 
that closely and robustly move together with quarterly GDP could 
be appropriate series helping to extract monthly GDP. With these 
related series available, it is then possible to estimate monthly 
GDP for Switzerland for 1980-1997 in different model setups5. 
 
The paper is organized as follows. It starts in section 2 with a short 
survey of the interpolation literature. In section 3, we briefly 
review the Kalman filter methodology and present the different 
interpolation models. In section 4, various related series are 
evaluated and described. We give an overlook of our results in 
section 5. We then evaluate the appropriateness of these 
interpolations. Section 6 concludes. 
 
 
2. Related Literature  
 
As Lanning (1986) ill ustrates, economists facing missing data 
have basically two different ways to solve that problem. A first 
approach is to estimate the missing data simultaneously with the 
economist's model parameters, thereby considering the missing 
observations as any other parameter. The second way is a two-step 
approach where in a first step the missing data, which could be 
independent from the economist's model, are interpolated. In a 
second step, the new augmented series are used to estimate the 
economist's model. Lanning found that the simultaneous approach 
yields estimates of the economist's model parameters that have a 
greater variance, and thus are less reliable, than the model 
                                                           
5 We exclusively concentrate our investigation on the period 1980-1997 because 
these figures are compatible with the new national accounting system in 
Switzerland, the European System of Integrated Economic Accounts (ESA) 78. 
This standard was introduced in Switzerland in 1996, but the State Secretariat 
for Economic Affairs calculated quarterly GDP figures back to 1980. See 
Schwaller and Parnisari (1997) for a survey. 
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parameters estimated with complete data in the second stage. 
Based on these empirical findings, he suggests the use of the two-
step approach. Related literature on the latter procedure can be 
subdivided in the following three classes. 
 
First, the seminal approach for the use of the univariate multiple 
regression technique with related series was presented by Chow 
and Lin (1971, 1976) in a unified framework which allows treating 
the interpolation of stock and flow variables. This approach was 
able to overcome the problems faced by Friedman (1962) who 
treated stocks and flows in different ways. Specifically, they could 
deal with the requirement that if an observed flow value is 
distributed among the corresponding subintervals, the higher 
frequency estimates must add up to the original flow variable. 
Until now, this univariate regression approach has been widely 
used for interpolation due to its easier implementation than the 
state-space approach. This argument seems to more than just 
outweigh the potential advantages of more sophisticated 
procedures. An annual GDP is for example interpolated for 
Mexico by De Alba (1990). Schmidt (1986) gives a survey of this 
method, interpolating personal income of USA regions. 
 
Second, Denton (1971), Fernandez (1981), and Litterman (1983) 
proposed a regression approach with related series that minimizes 
a weighted quadratic loss function on the difference between the 
series to be estimated and a linear combination of the observed 
related series. This model is related to the Chow and Lin 
regression and designed for the use of data in first difference. An 
illustration with Portuguese data is given in Pinheiro and Coimbra 
(1993). 
 
Third, Bernanke, Gertler and Watson (1997) have used a state-
space model to interpolate real GDP in the USA. Their approach is 
to first estimate monthly components of nominal GDP plus the 
GDP deflator and then to aggregate the individual estimates. They 
followed the methodology suggested by Harvey and Pierse (1984) 
who provide a general framework - state-space formulations for 
stock and flow variables, for stationary and nonstationary series, 
and with or without related series - to estimate missing 
observations in economic time series. Solving such state-space 
models requires the use of the Kalman filter. A Kalman filter 
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interpolation is done for Canadian GDP by Guay, Milbourne, Otto 
and Smith (1990). 
 
Hereafter, we present a state-space framework introduced by 
Harvey and Pierse (1984). This general formulation allows us to 
rewrite all three classes of models using related series as well as 
much simpler versions that do not make use of related series. 
 
 
3. Models 
 
3.1. Kalman Filter  
 
A useful method for extracting signals is to write down a model 
linking the unobserved and observed variables in a state-space 
representation according to Kalman (1960, 1963). The 
multivariate Kalman filter is an algorithm for sequentially 
updating a linear projection on the vector of interest. We present 
various configurations of the state-space system in the next section 
on interpolation models. 
 
The state-space representation is given by a system of two vector 
equations. First, the state or transition equation describes the 
dynamics of the state vector ( t� ) containing the unobserved 

variables we estimate. The second type of equation represents the 
observation or measurement equation linking the state vector to 
the vector containing the observed variables ( +

ty ). The equations 

of this system for Tt ,,1�=  where 6 is the number of monthly 

observations are the following: 
 
 111 +++ +′+= ttttttt uRxC�F� , (1) 

 
 ttttttt vN�HxAy +′+′= ∗+ . (2) 

 
In addition to the unobserved and the observed variables of 
interest, vector equations (1) and (2) contain the so-called related 
series ( tx ) and ( ∗

tx ) as exogenous variables in each equation. Both 

equations have multinormally distributed error terms: 
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t . Premultiplied by matrices tR  and tN , 

these orthogonal disturbances transform into nonorthogonal 
residuals within each vector equation. The coefficients matrices 

tttttt NHARCF ,,,,, ′′′ , and the two variance-covariance matrices Q  

and G  are estimated by maximizing the log-likelihood function of 
this system. 
 
 
3.2. Interpolations Models 
 
3.2.1. Overview 
 
In this section, we adapt the general state-space representation (1) 
and (2) to our problem in different ways, specifically the inclusion 
of related series and assumed stochastic processes for monthly 
GDP. The interpolation framework6 for Tt ,,1�= is:  
 
 111 +++ +′+= tttt RuxCF�� , (3) 

 
 ttttty �hxa ′+′= ∗+ . (4) 

 
The state vector equation (3) describes the vector dynamics of the 
unobserved variable, monthly GDP ty , stacked in the state vector 

( )′= −− 21 tttt yyy� . The exact formulation of this state vector 

equation is difficult, because there is no prior knowledge about the 
true process driving monthly GDP. In order to shed light on this 
issue, we compare results of various competing setups in section 
5. We assume time-invariant coefficients for the matrices CF ′, , 
and R . 
 
                                                           
6 In all the models, quarterly GDP ( +

ty ) is given each month, 01 =+y , 02 =+y , 

=+
3y first quarterly value, 04 =+y , 05 =+y , =+

6y second quarterly value, etc. 

Note that we observe 3T  quarterly values for 
�

 months to interpolate. 

Contrary to the usual convention we do not include zero observations when 
stacking monthly observations of quarterly values. The resulting column vector 

+y  has therefore the dimension [ ]13×T . 
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Equation (4) relates the state vector to the observed quarterly GDP 
+
ty . Following Harvey and Pierse (1984), this observation 

equation represents the constraint that the sum of three monthly 
GDP estimates within a quarter sum up to the quarterly data. The 
sum-up constraint is introduced by the coeff icients vector ta′  and 

th′  depending on the models presented in the following section. 

The identity character of this equality implies that it does not have 
to contain an error term. 
 
All the specifications of the state-space models described hereafter 
correspond to different assumptions depending on whether related 
series ( tx  and ∗

tx ) are used or not and on the characteristics of the 

data to interpolate (stochastic process and stationarity). The 
properties of the data such as the order of integration and the 
assumed stochastic driving process of monthly GDP influence the 
representation of the state equation. Possible related series 
influence the setup of the state vector equation and the observation 
equation to in turn affect the coeff icients contained in C′  and ta′ . 

We add related series in order to evaluate their statistical 
relevance. The selected assumptions are also guided by simplicity 
and technical considerations of the construction of the Kalman 
filter. 
 
Hence, we focus on two broad classes of Kalman filter models 
summarized in figure 1. 
 
The first class of models is designed without related series. We 
assume that there is enough information in the autocovariance 
function of the quarterly series and in the assumed low-order 
autoregressive (AR) process of monthly GDP. Moreover, we 
combine this assumption with alternative ways to treat 
nonstationary series (models 1a-c). 
 
Contrasting with these AR models are two ‘naive’ models that 
neither follow an AR process nor include related series. However, 
it is not necessary to run the Kalman filter, because simple 
calculus produces the same results. 
 
For each quarter, model 1d returns three equal monthly values, 
namely the third of the corresponding quarterly observation. 
Model 1e produces for each quarter three monthly GDP that 
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follow a quarterly linear trend centered around the monthly mean 
of the quarter7. We take model 1e as a benchmark because of its 
intuitive setup. 
 
Figure 1: Overview of Interpolation Models 
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First arrow column displays correction of nonstationarity. Second arrow column 
concerns the residuals form. Last column displays model numbers. AR(2) stands 
for an AR(1) process in first difference rewritten as an AR(2) in level; BGW 
means correction according to Bernanke, Gertler, and Watson (1997); �  uses a 
first difference operator; in absence of correction done by the model, we 
                                                           
7 Model 1d needs a constant term as an explanatory variable in order to 
calculate the third of the quarterly observation. Model 1e interpolates monthly 
observations linearly within a quarter, where we assume that we can split each 
quarter (except the first one) into an initial value 3−ty  which is the last month of 

the previous quarter and a step td  for Tt ,,5,4 �=  according to the following 

equation: ( ) ( ) ( ) +
−−− =+++++ ttttttt ydydydy 32 333 ϕϕϕ . As quarterly GDP +

ty , 

the step td  is given each month, 04 =d , 05 =d , =6d monthly step of second 

quarter, etc. ϕ  is a scalar that takes on 1 for Tt ,,9,6 �=  and 0 for 

1,,7,5,4 −= Tt � . 
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mention ‘no’ ; ‘diag.’ indicates no autocorrelation in the residuals; AR(1) stands 
for residuals following an AR(1) process. 
 
The second class of models is an extension of the first group in 
that it introduces related series in order to extract information for 
the interpolation of monthly GDP. Within this group, we 
distinguish between the assumptions that monthly GDP does not 
follow an autoregressive process (models 2a-d) and that it does 
(models 2e-f). We further enrich this second class of models with 
different ways to treat nonstationarity and with different 
assumptions about monthly residuals. 
 
In the next paragraphs we show the various models 1a-c and 2a-f 
in detail . 
 
 
3.2.2. Models without Related Series 
 
Model 1a 
 
In our first model, we assume that the first difference of monthly 
GDP  Z �  follows a stationary AR(1) process ttt uyy +∆=∆ −1φ  in 

order to treat nonstationarity. Coefficient φ  is constrained to lie 

inside the unit circle and V �  is an iid error term with distribution  

( )2,0 uN σ . In order to find a starting value for the GDP series, it is 

imperative to write this AR(1) as an AR(2) of the series in level8: 
 
 ( ) tttt uyyy +−+= −− 211 φφ . (5) 

 
This equation written in companion form, where 

( )′= −− 21 tttt yyy� , yields the state equation (6) for Tt ,,1�= . 
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8 This ‘ transformation’ yields the same likelihood and the same estimator for φ  

as the original equation. However, this form has the characteristic to produce a 
system with explosive eigenvalues. 
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Note that this formulation sets 0C =′  in equation (3). The 
observation equation simply incorporates the sum-up constraint 
without related series. This implies 0a =′t . th′  takes on two 

different values depending on the respective month. Namely, it is a 
row vector of ones when quarterly values are observable and it 
consists of zeros otherwise in order to cancel out the equation: 
 
 ttty �h′=+ , (7) 

 
where ( )000=′th , for Tt ,,7,5,4,2,1 �= , and where 

( )111=′th , for Tt ,,9,6,3 �= . 

 
 
Model 1b 
  
Recently, an interpolation method was suggested by Bernanke, 
Gertler and Watson (1997) who treat nonstationarity in an 
alternative way than model 1a. It consists in using GDP integrated 
of order one (I(1)) with a cointegrated series Q �  such that we 

compute a new monthly stationary series9 tt
s
t pyy = . Q �  is just a 

scaling variable such that s
ty  is nontrending. This approach relies 

on a calculated multiplicative cointegration that holds at both, 
monthly and quarterly frequencies. For the dynamic specification 
of s

ty , now forming the elements of state vector t� , we assume 

AR(1) process t
s
t

s
t uyy += −1φ . Compared to model 1a, Z is 

replaced by Z
�

 and the first row in F  is ( )00φ . The 

observation equation also changes because we have to ‘neutralize’ 
the meaningless s

ty  series. Redefining vector th′  restores the 

familiar sum-up constraint: 
 
 ttty �h′=+ , (8) 

 
where ( )000=′th , for Tt ,,7,5,4,2,1 �= , and where 

( )21 −−=′ tttt ppph , for Tt ,,9,6,3 �= . 
                                                           
9 The ratio tt

s

t pyy =  is chosen as a general framework in that it avoids to 

assume a particular cointegrating vector that we cannot estimate at the monthly 
level. 
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Model 1c 
 
Finally, Bomhoff (1994) suggests to use the series in level arguing 
that the Kalman filter does not require the user to make a definite 
decision about the need for differencing the data. The Kalman 
filter offers automatic processing capacity for a wide range of 
nonstationary time series. Hence, we write down the law 
governing the process as if the series were stationary:  

ttt uyy += −1φ . This model is similar to model 1a but with a first 

row of matrix F  defined as ( )00φ . 
 
 
3.2.3. Models with Related Series and without AR Structure 
 
The main criti cism of models 1a-c is that they extract signals only 
from assumptions about the stochastic process of the original 
series without adding new information. We could speak about 
‘f ool-yourself’ models to generate monthly GDP. It is obvious that 
we are better off enriching the model with some economic content. 
For this purpose, we now include explanatory series that are 
related to the series to be interpolated. 
 
In all the models, we may introduce the related series either in the 
measurement equation (4) for the generalized least squares (GLS) 
estimator (models 2a-d), or in the state equation (3) for the 
Kalman filter algorithm (models 2e-f). 
 
 
Model 2a-b 
 
Chow and Lin (1971, 1976) show how related series can be used 
to interpolate lower frequency data in order to get higher 
frequency data with a GLS estimator. They assume that monthly 
GDP Z �  is described by a linear regression of ty on M related series 

tx , in matrix notation GLSGLS uX�y += , where the variance-

covariance of the error term is ( )GLSGLSE uuV ′= 10. They also 
                                                           
10 In order to get identical coefficients 

�
 for the monthly and the quarterly 

regressions, the [ ]1×T  vector GLSy  of Chow and Lin contains figures that are 

three times larger than the monthly estimates of the Kalman filter setup. 
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assume the same relationship at the quarterly level:  
+++ += u�Xy , where +X  is a matrix with quarterly average of 

three months of related series and +V  the variance-covariance 
matrix ( )+′+uuE . +V  is thus a function of V . 
 
The Kalman filter configuration of the Chow and Lin model is: 
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( )000=′th , and 0a =′t  for 1,,7,5,4,2,1 −= Tt � , and 

( )111=′th  and ca ′=′t  for Tt ,,9,6,3 �= . As the related series 

and their coefficients are contained in the state vector equation, we 
set 0C =′  in equation (3) and reintroduce them as ∗′ ttxa  in the 

observation equation. 
 
Chow and Lin (1971, 1976) directly calculate a best linear 
unbiased estimator for the monthly series from the trace 
minimization of the covariance matrix [ ]GLSV y� , where GLSy

�
 

denotes the [ ]1×T  vector of the monthly variables. Applying a 
GLS method, they avoid numerical optimization problems 
involved with the Kalman filter procedure11. The estimates of 
monthly GDP are 
 
 ( ) ++= uV��Xy ���

GLS . (11) 

 
                                                           
11 See the appendix for the comparison of log-likelihood functions for both 
Chow and Lin and the Kalman filter setups. 
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This special fitted value consist of two parts: a traditional fitted 
value �X

�
 with the influence of related series and an interpolation-

corrected residual term ( ) +uV�
�

. 

�
�

 is a GLS estimator of the regression between quarterly GDP 

data ( +y ) and their ‘quarterly’ related series ( +X ): 
 

 +++
−

+++ −− ′



 ′= yVXXVX�
11

1�
. (12) 

 
The weighting matrix in this regression is the inverse of the 
variance-covariance matrix +V  of the quarterly residuals +u . 
Hence, the assumptions about V  directly influence the 
distribution of �

�
 and the [ ]3TT ×  matrix �  for the 

dissemination of the quarterly residuals over the monthly 
estimated GDP. These quarterly residuals are crucial for 
interpolation, because the fitted monthly values �X

�
 do not sum up 

to quarterly observations. To correct for this shortcoming, the 
residuals +u  must be ‘redistributed’ to the monthly GDP values 
according to the weighting matrix � . 
 
Models 2a and 2b differ in their assumptions about V . In model 
2a, we design the variance-covariance of the monthly residuals 
V simply as a diagonal matrix TuGLS

I2σ . It implies that +V , the 

variance-covariance matrix of quarterly residuals is equal to 

3

2

3 T
uGLS I

σ
 and �  is equal to 3

3
iI ⊗T . 

 
However, a diagonal variance-covariance matrix V  is rarely 
supported by the data. One way to account for this shortcoming is 
to allow for serial correlation in the error term. Hence, we assume 
for the model 2b that the error term follows an AR(1), 

tGLSGLS tt
uu εϕ +=

−1
 where tε  is a white noise, yielding a variance-

covariance matrix:  
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This specification obviously changes �

�
 and the redistribution 

matrix�which depends now on ϕ . The more ϕ  tends to zero, the 

more the �  matrix converges to 3
3

iI ⊗T . Hence, if the serial 

autocorrelation is significant, redistribution is less ‘r igid’ than in 
model 2a and the quarterly residuals are not only spread out over 
their corresponding months but also influence monthly GDP of 
surrounding quarters in a ‘smoother’ way. 
 
 
Model 2c-d 
 
A variation of models 2a-b, as suggested by Denton (1971) and 
Fernandez (1981), is to use first differences of a time series in the 
regression instead of levels in order to account for nonstationarity. 
In model 2c, we assume that the variance-covariance of the error 
term V  is TuGLS

I2σ  and in model 2d, that the error terms follow an 

AR(1) with a variance-covariance matrix V  equal to matrix (13). 
The weighting matrix to estimate �

�
 equals the inverse of the 

quarterly equivalent of ( ) 1−′′′ DVD , where 
  

 


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



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





−
−

=

��

�

110

011

001

D . (14) 

  
Note that compared to models 2a-b, the introduction of the first 
difference operator D  affects matrix � , and hence the 
redistribution of the quarterly residuals to the monthly GDP. 
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3.2.4. Models with Related Series and AR Structure 
 
Model 2e 
 
In addition to the introduction of related series explained in the 
previous class of models, we assume here in addition that monthly 
GDP is characterized by an autoregressive structure. The 
nonstationarity correction is similar as in model 1a. After the 
inclusion of related series to model 1a, the state equation becomes 
equation (6) plus the term 1+′ txC  where 1+tx  includes M related 

series. 
 
 
Model 2f 
 
This model is similar to model 1b with added related series. As in 
model 2e, matrix C′  characterizes their impact on monthly GDP. 
 
 
4. Data 
 
4.1. Signal Extraction from Related Series 
 
A key factor in the present interpolation problem is the signal 
extraction from related series. Besides the assumption about the 
dynamics of GDP, related series data represent the main 
information source for interpolation. These data must fulfill two 
requirements. 
 
First, they need to be correlated with the series to interpolate. The 
higher the systematic comovements with GDP are, the stronger is 
the signal to fill the gaps. If however, there is only a modest 
information content in the related series, this comes at the cost of a 
lot of noise introduced in the interpolated series. The choice of the 
related series is therefore crucial in order to successfully estimate a 
series at higher frequency. 
 
Second, the related series need to be available in the desired higher 
frequency of the interpolated GDP. The fact that there are not 
many macroeconomic series available at monthly frequency 
imposes a strong restriction in Switzerland. This leads us to use 
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also foreign variables that are correlated with the desired related 
series. 
 
These two points require a thorough investigation for the task of 
choosing the correct related series. Amemiya (1980) suggests a 
joint strategy based on economic-theoretic considerations and on 
statistical evidence. Economic intuition can often indicate which 
related series to choose and what functional form they should 
have. Moreover, it is convenient to have a single statistical 
measure to choose related series that produce the ‘best’ result. 
These two aspects, intuitive approach and choice metrics, should 
be viewed as forming a single evaluation package rather than 
representing competitors. For the final choice of the related series, 
presented in detail i n the following section, we jointly use both 
elements of the selection process. 
 
 
4.2. Choice of Related Series 
 
4.2.1. Economic Intuition 
 
The most natural way to approach the series selection problem is 
to split up GDP into its expenditure components, private 
consumption (%) , private domestic investments (+) , government 

expenses ()) , and net exports (:�/): 

 
 MXGICY −+++= . (15) 
 
With the exception of exports and imports, none of these series is 
available at the higher frequency. Therefore, it is necessary to 
identify related series that proxy for the desired components. 
 
An alternative to breaking GDP into its expenditure components is 
to benefit from the characteristics of Switzerland as a small open 
economy and the important comovement between domestic and 
foreign business cycles. Taking into consideration monthly foreign 
economic indicators allows us to choose the related series from a 
broader data set as Switzerland’s closest trade partners have 
traditionally large statistical databases. 
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4.2.2. Statistical Evaluation 
 
In this section, we describe the search for individual proxy 
variables within an economic model. Suppose, we identify a set of 
related data series X  out of which variable Y�  is unobservable. 

Furthermore, the variable Z which is being interpolated depends 

linearly on X .  
 
 ttkkttt uxxxy ++++++= ...... ,,22,110 αααα  (16) 

 
The goal is to choose the best observable proxy for Y� . In cases 

like this, an informal method often applied is replacing Y�  with the 

variable [�  which yields the highest 4
�
 of all possible candidates in 

equation (16). Leamer (1983) shows that if the proxy variables are 
assumed to depend linearly on Y�  and the error terms being 

normally iid, the best proxy is the one that produces the highest 4
�
. 

In the univariate regression titkiti xz ,,, εδ += , the particular proxy [ �  

which yields the smallest variance 2

iεσ  can be defined as the best 

one. Leamer uses a likelihood ratio test to show the 
unambiguously negative relationship between the variance of the 
error term and 4

�
. 

 
Another popular method which can be applied to a wider range of 
competing models than the one 4

�
 criterion above is the method of 

penalized likelihood. The best known examples in this class of 
criteria are the Akaike (1974) Information Criterion (AIC) and the 
Schwartz (1978) Information Criterion (SIC). In this class of 
criteria, a term that acts to punish additional coefficients is added 
to the negative of the likelihood function, and therefore, smaller 
values are preferable. 
 
 
4.3. Data Description 
 
Over a long time, Switzerland has stayed far behind other 
European countries in the development of economic statistical 
data. In 1996, as part of a reform program, national accounting 
was adapted to the European System of Integrated Economic 
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Accounts (ESA) 78. Thereafter, GDP was calculated differently. 
The Federal Statistics Office dated the series back to 1980 such 
that there is now a data sample of more than 18 years or 73 
quarterly observations. The figures to be interpolated are deflated 
and deseasonalized. 
 
The related series12 in the national accounting approach have been 
identified as retail sales Y

� �
 to proxy for private consumption and 

as the non-utilized construction loans to proxy for investment Y
� �

. 

These monthly available proxies have been selected based on the 
criteria described in the previous section. Furthermore, we include 
exports Y

�

 and imports Y
�

. All the series are entered in levels, 

because the models transform the level vectors into the desired 
form. Government expenditure was dropped in the national 
accounting approach due to its low covariance with the business 
cycle. This would have introduced too much noise and moreover, 
there is no sensible proxy for it at monthly frequency. 
 
As foreign series, we use a composite IP index of the five major 
trade partners of Switzerland Y

� � � 	 

, British IP Y

� � 
 �
, and German IP 

Y
g
 �

. IP are the foreign monthly available series that move closest 

with the Swiss business cycle of all the related foreign series 
considered (results not reported). Prior to estimation, we have 
excluded several potential series based on economic arguments or 
on the statistical evaluation of the previous section. French IP, 
Italian IP, survey data by the Institute KOF for Business Cycle 
Research of the Swiss Federal Institute of Technology Zurich, 
labor market figures, exchange rates, and commodity prices were 
statistically eliminated. We have neither included variables that 
have proved to have predictive power for GDP such as the term 
spread because of unrealistic assumptions on the lead-lag 
relationship that would have been necessary. Figure 2 and table 1 
give an overlook over the related series used in this paper. 
 
During the 18 years of observations, the state of the Swiss 
economy can be roughly divided in two parts. Figure 2 clearly 
shows the phases of economic growth and prosperity in the 1980's 
                                                           
12 All the series, with the exception of real GDP given by the State Secretariat 
for Economic Affairs, are provided by Datastream. 
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and of stagnation in the 1990's. During its recession, Switzerland 
exhibited the lowest real GDP growth of all European countries13.  
 
Table 1 reports basic summary statistics of the quarterly and 
monthly series used for interpolation. Following the integration 
results from figure 2 and from augmented Dickey-Fuller (ADF) 
tests for all the variables (not reported), we find that all the series 
in levels are nonstationary. Hence, we report the results for growth 
rates. The ADF tests and the AR(1) regressions on the growth 
rates confirm that the level of the series is not stationary.  
 
The different values of the contemporary cross-correlations also 
confirm the requirement of the comovements of the related series 
with quarterly GDP. Finally, these cross-correlations also show 
why we only consider contemporary relationships between the 
related series and the quarterly GDP. It is diff icult to find robust 
leads and lags - the so-called stylized facts of the business cycles 
literature - between GDP and our proxy variables. 
 
 
Table 1: Data Description 
 

Descriptive Statistics 
 6  @  AR(1)  JB  ADF  

HEQ 1.33  2.95  0.25  0.05  -4.38 * 

Y
� �

 3.20  46.29  -0.65 * 77.88 * -11.04 * 

Y
� �

 -0.97  21.39  0.25 * 199.18 * -2.98 * 

Y
�

 4.09  49.03  -0.57 * 53.17 * -7.91 * 

Y
�

 4.29  51.11  -0.61 * 85.52 * -8.06 * 

Y
� � �

 1.40  21.73  -0.43 * 1370.58 * -6.26 * 

Y
	 
 � �

 1.31  13.17  -0.22 * 6.71 * -5.30 * 

Y
� � 
 � �

 1.52  12.16  -0.32 * 68.53 * -5.63 * 

 
 
 
                                                           
13 We decided not to take into account this structural break in the estimation of 
the Kalman parameters which could be done by the use of time-varying 
parameters or of dummy variables. As illustrated by our calculus models for 
example, the Kalman filter itself takes changing trends over time into 
consideration when computing monthly estimates. 
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Table 1: Data Description (continued) 
 

Cross-correlations with HEQ 

 -3 -2 -1 0 1 2 3 

Y
� �

 0.01 0.12 -0.01 0.09 0.13 0.12 0.02 

Y
� �

 0.30 0.37 0.30 0.23 0.23 0.14 0.16 

Y
�
 0.10 0.15 0.18 0.26 0.25 -0.02 -0.07 

Y
�

 0.16 0.17 0.20 0.09 0.26 -0.05 0.03 

Y
� � �

 0.03 0.12 0.34 0.25 0.35 0.21 0.14 

Y
	 
 � �

 0.03 0.09 0.17 0.05 -0.01 -0.09 -0.17 

Y
� � 
 � �

 0.05 0.18 0.41 0.27 0.30 0.19 0.09 

 
 
Annualized statistical figures are calculated for quarterly growth rates of GDP 
and for monthly growth rates for all other variables. � � �  = Gross domestic 

product; � � �  = Value of retail sales; � �
�
 = Non-utilized construction loans; �

�
 = 

Exports volume; �
�

 = Imports volume; � �
� �

 = IP in Germany; �  
! " #

 = IP in UK; 
$ % & ' ( )  = Composite index of IP. All variables except * + , ' ( )  are seasonally 

adjusted. -  = Mean; .  = Standard deviation; AR(1) = First-order autoregressive 
coefficient; JB = Jarque-Bera test; ADF = Augmented Dickey-Fuller test. Null 
hypotheses: i) first-order AR coefficient test, H0: AR-coefficient = 0; ii) JB test, 
H0: normal distribution; iii) ADF test, H0: unit root. Rejection of the null 
hypothesis at the 1% significant level (*) and at the 5% significance level (**). 
Dynamic correlations with / 0 1  are cross-correlations of lags and leads (between 

-3 and 3) of quarterly growth rate of related series with quarterly GDP growth 
rate. Source: Datastream and State Secretariat for Economic Affairs 
 
We also perform a Johansen (1991) test in order to check for 
cointegration that is needed for the evaluation of the applicability 
of the Bernanke, Gertler and Watson (1997) approach. It is natural 
to assume that Y

2 3
 is moving along with GDP. We therefore test 

the quarterly proxy for cointegration. The test results reject the 
hypothesis of no cointegration at the 1% significance level. These 
results are displayed in table 2. 
 
Table 2: Cointegration Test of HEQ and Y

2 3  

 
A H0 Ha LR  B H0 Ha LR  
A1 0 2 25.11 * B1 0 1 23.88 * 
A2 1 2 1.73  B2 1 2 1.73  
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Cointegration tests are performed with quarterly data. � � �  = Gross domestic 

product; � � �  = Value of retail sales. H0 = Null hypothesis; Ha = Alternative 

hypothesis; for each hypothesis, given figure is number of cointegration 
relations; LR = Likelihood ratio statistic. Tests are run assuming linear trend in 
data and an intercept in the cointegrating equation and in the vector 
autoregression. Two lags are included. Test A, null hypothesis of �  

cointegrating relations against the alternative of no restrictions. LR is the 
weighted sum of the ( � � 	 )-smallest eigenvalues. Test B, null hypothesis of 	  

cointegrating relations against the alternative of 	 
 �  relations. LR is the 

weighted � 

�
 largest eigenvalue. Rejection of the null hypothesis at the 1% 

significant level (*) and at the 5% significance level (**). 
 
 
We do not report the tests of other potentially cointegrated 
variables with an economic interpretation. All the tests reveal that 
only the quarterly GDP and Y

� �
 are cointegrated. Hence, we use Y

� �
 

either as a related series or as the detrending series Q in the 

Bernanke, Gertler and Watson (1997) framework14. Since we 
cannot directly test for multiplicative cointegration, an ADF test 
on the quarterly equivalent of rss xyy =  reveals that this ratio is 
stationary at the 1% significance level. 
                                                           
14 To prevent the detrending series from introducing excessive volatility in the 
system, we take only the low frequency part of rsx  after Hodrick-Prescott 
filtering. The main objective of detrending GDP can still be maintained. 
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Figure 2: HEQ and Related Series 
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GDP uses solid line in mio CHF; related series use 
dashed line. Non-utilized construction loans in mio 
CHF, other related series as index points. Source: 
Datastream and State Secretariat of Economic 
Affairs. 

 



Monthly GDP  
 

 Economic & Financial Modelli ng •Winter 2000 175 

 
 
5. Results 
 
5.1. Overview 
 
The interpolation results are displayed in table 3. For each model, 
it contains statistical information about the estimated series for the 
period 1981-199715,16 namely, the related series, the information 
criterion, the log-likelihood, and key indicators for the annualized 
growth rate of the monthly interpolated GDP. Two mean-squared 
errors (MSE) for the evaluation of the models are given. The first 
one is between the level of the interpolated benchmark (model 1e) 
and the interpolated series of each model, respectively. The second 
one is the MSE between the observed quarterly GDP and a 
simulated quarterly interpolated GDP from annual data within the 
model in question in order to compare how the interpolation 
model would have performed at a frequency where models can be 
selected unambiguously based on an available data set. 
 
Note, that table 3 is constructed in order to evaluate the models 
with respect to two basic directions. First, it is important to know 
whether the inclusion of related series (class 2) performs better 
than the ‘f ool-yourself’ class 1. Second, we investigate the 
appropriate treatment of nonstationarity and analyze whether 
recent techniques perform better than traditional ones. 
 
 
                                                           
15 Due to initial oscill ations using the Kalman filter, we discard twelve months 
of observations which otherwise would have influenced the results. 
16 Note that we interpolate GDP with information that is available ex post. This 
ensures that monthly values sum to the quarterly observations. In certain 
empirical studies, the monthly indicator should represent the information set of 
decision makers in the respective period. In Switzerland, quarterly GDP is 
published about 10 weeks after the reference quarter. In this case, we 
recommend to use a series not influenced by the sum-up constraint. The 
presented methods generate such a series as a by-product (not reported). 
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Table 3: Interpolation Results 
 

Model 1, 1a    2, 1c    3, 2a    4, 2a    

Series -    -   Y
� � � � �

  Y
� �

  
AIC 8.05  10.08  14.66  17.31  
log L -562.56  -573.41  -636.59  -733.33  
6 1.32  1.33  1.20  1.25  
@ 4.30  5.11  9.93  5.22  
AR(1) 0.21 * 0.06  -0.37 * -0.02  
JB 308.06 * 15.59 * 12.09 ** 192.13 * 
ADF -5.47 * -5.96 * -5.79 * -5.30 * 
MSE 1e 3307.38  4146.21  18659.04  7123.27  
MSE AQ 196862.53  144095.19  206864.82  208184.95  
         
Model 5, 2a    6, 2b    7, 2b    8, 2b  

Series Y
� �

, Y
� �

, Y
	

, Y



  Y
� � � � �

  Y
� �

  Y
� �

, Y
� �

, Y
	

, Y



  
AIC 13.06  15.89  17.32  13.34  
log L -575.38  -681.65  -733.97  -585.70  
6 1.27  1.29  1.30  1.41  
@ 14.13  6.42  3.49  12.21  
AR(1) -0.53 * -0.14 ** 0.73 * -0.53 * 
JB 2.77  17.93 * 16.83 * 0.52  
ADF -6.40 * -5.53 * -4.20 * -6.85 * 
MSE 1e 32328.09  8884.46  4245.59  23601.90  
MSE AQ 248244.08  129891.30  97166.50  221468.03  
         
Model 9, 2c    10, 2c    11, 2c    12, 2d  

Series Y
� � � � �

  Y
� �

  Y
� �

, Y
� �

, Y
	

, Y



  Y
� � � � �

  
AIC 15.63  14.42  14.38  15.27  
log L -677.97  -627.11  -623.52  -664.89  
6 1.30  1.30  1.34  1.27  
@ 3.65  3.51  4.66  6.80  
AR(1) 0.63 * 0.72 * 0.14 ** -0.23 * 
JB 6.58 ** 15.93 * 9.62 * 13.45 * 
ADF -4.30 * -4.17 * -5.57 * -4.91 * 
MSE 1e 4394.56  4287.16  5674.41  10947.86  
MSE AQ 139871.77  102001.75  79448.95  120193.62  
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� � �  = Gross domestic product; � � �  = Value of retail sales; � �

�
 = Non-utilized 

construction loans; �
�

 = Exports volume; �
	

 = Imports volume; � 
 � �

 �

 = 

Composite index of IP. All estimations include a constant, models 2c and 2d 
transform time trend to constant. Descriptive statistics are for annualized growth 
rates of the interpolated GDP for 1981-1997. log L = Value of log-likelihood 
function; �  = Mean; �  = Standard deviation; AR(1) = First-order autoregressive 
coefficient; JB = Jarque-Bera test; ADF = Augmented Dickey-Fuller test. Null 
hypotheses: i) first-order AR coefficient test, H0: AR-coefficient = 0; ii) JB test, 
H0: normal distribution; iii) ADF test, H0: unit root. Rejection of the null 
hypothesis at the 1% significant level (*) and at the 5% significance level (**). 
MSE with 1e is for 1981-1997 and MSE Annual � Quarterly (AQ) is for 1982-
1996. 
 
 
5.2. Evaluation of Related Series 
 
It is desirable that the interpolation not only relies on a purely 
econometric and mechanical procedure but also on economic 
intuition. Econometrically, the conclusion of whether to include 
related series or not is ambiguous. AIC and likelihood ratio tests 
show that introducing related series does not always enhance the 
performance of the interpolation as it involves costs of additional 
noise in the interpolated series. All the models generating too 
much volatility relative to the annualized standard deviation of the 
quarterly GDP estimates are not displayed in table 3 as they are 
economically not meaningful17. 
                                                           
17 We restrict ourselves to models that produce series with an annualized 
standard deviation lower than five times the variability of the growth rate of the 

Table 3: Interpolation Results (continued) 
 
Model 13, 2d    14, 2d    15, 2e    16, 2e  

Series Y
�
  Y

� �
, Y

� �
, Y

�
, Y

�
  Y

� �
  Y

� �
, Y

� �
, Y

�
, Y

�
  

AIC 14.30  14.09  8.05  8.04  
log L -622.86  -614.83  -562.55  -562.55  
6 1.28  1.35  1.28  1.29  
@ 4.69  7.96  4.30  4.58  
AR(1) 0.10  -0.36 * 0.22 * 0.11  
JB 332.63 * 15.08 * 306.50 * 156.83 * 
ADF -4.92 * -5.63 * -5.45 * -5.56 * 
MSE 1e 6696.91  11778.87  3282.52  3701.94  
MSE AQ 151188.26  141821.70  147968.33  163693.19  
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Related series could possibly break the regular pattern within a 
quarter, produced by all interpolation procedures without related 
series18. However, as shown in figure 3, series 16 for example is 
not able to break the pattern. The figure shows monthly estimates 
and the published quarterly GDP. The cyclical pattern within the 
quarter, illustrated in the bottom panels, is an average difference 
for the three months within the quarter between series 16 and the 
benchmark (1e) for growth and decline periods, respectively. 
 
The deviations are significant for the first and the last observation 
within the quarter and lead us to reject the model for economic 
reasons. Moreover, we find that in all type 2e series the inclusion 
of related series, relative to model 1a, even exacerbates the 
pattern. 
 
The suggestion of Bomhoff (1994) that the Kalman filter accounts 
for nonstationarity cannot be generalized for interpolation with AR 
structure in the state equation. Explosive eigenvalues, responsible 
for the pattern, are introduced in models 1a and 2e by 
construction. In model 1c, the pattern is implied by estimating a φ  
close to one. We eliminate the pattern by removing its source, the 
presumed inertia in GDP growth, and we use models 2a-d which 
assume no AR process. 
 
Regarding the two sets of related series, one observes that in 
general, related series based on the open economy assumption 
introduce less volatility in the generated growth rates than the 
national accounting variables. For the related series Y

� � � � �
 and Y

� �
 

this relation is reversed19. However, including additional variables 
                                                                                                                                 
official quarterly GDP estimates (15%). Comparisons between monthly and 
quarterly values of industrial production growth in various countries show that 
the annualized values of monthly standard deviation are two to five times higher 
than quarterly ones which serve as a reference. 
18 The pattern is systematically convex or concave if the model has an AR 
structure, depending on growth state of the economy. Monthly GDP estimates 
produced by model 1e are linear and model 1d produces monthly estimates 
which equal one third of the corresponding quarterly GDP. 
19 Of all the series that could not be distinguished by statistical evaluation in 
section 4.2.2, comipx  is found to be the most useful related series of the open 

economy approach. Results using gipx  and ukipx  are therefore not reported in 
table 3. 
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in the national accounting approach increases the volatility 
considerably. To further investigate the characteristics of the most 
appropriate related series, note that within each model the log-
likelihood values show that the national accounting approach is 
preferable even if not always significantly. 
 
 
Figure 3: Pattern of Series 16 
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Interpolated monthly GDP (right-hand scale) is displayed as solid line. Squares 
represent quarterly GDP values. The bars in the bottom panels represent the 
average deviation of the monthly interpolated values from the benchmark during 
GDP growth (bottom left) and decline periods (bottom right). The dashed bars 
indicate the 5% critical values. All figures in mio CHF. 
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Another evaluation criterion is the MSE of a model series with 
respect to the benchmark 1e. The results indicate that in general 
adding related series increases the MSE reflecting an increase in 
volatility as the models deviate more from the smooth benchmark. 
As this criterion is rather soft and as there are models with the 
contrary effect, it does not seem suitable for model evaluation. 
Moreover, our benchmark is mainly founded on practical reasons 
and it proves not to be suitable as an objective measure for model 
evaluation. 
 
 
5.3. Evaluation of Techniques 
 
The comparison between different interpolation setups and the 
question whether modern setups perform better than traditional 
ones are closely linked to the treatment of stationarity. First of all, 
within the regression-based methods the correction for 
nonstationarity proposed by Denton (1971) and Fernandez (1981) 
(DF, model 2c) produces results that are qualitatively only slightly 
better than the classic Chow and Lin method using level series 
(CL, model 2a). 
 
The effect of modelling AR(1) error terms in the CL-model 
(model 2b) and in the DF-model (model 2d) is not clear. In the 
CL-models, the likelihood falls while for the DF-models it 
increases, when AR(1) error terms are considered. The standard 
deviation of the generated series rises in the CL-models and 
behaves irregularly in the DF-setups. 
 
Models constructed following Bernanke, Gertler and Watson 
(1997) are clearly worse than the ones reported in table 3, both in 
terms of cyclical regularity and volatility. This procedure neglects 
the fact that the Kalman filter already corrects the nonstationarity 
of the data. 
 
Generally, regression-based models yield good estimators while 
Kalman filter routines sometimes struggle with the numerical 
optimization. In case of model equivalence, we recommend for 
practical reasons the use of analytical solutions. However, due to 
its flexibility, the Kalman filter is able to model a much richer set 
of assumptions about the properties of monthly GDP while the 
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GLS approach utterly fails to model any stochastic behavior. This 
makes the Kalman filter an unavoidable tool when analyzing 
competing interpolation models. 
 
 
5.4. A Monthly GDP Estimate 
 
Based on this mixed evidence concerning the two directions, we 
recommend the setup and series 5 for further research. Due to the 
absence of AR structure, it does not display a regular pattern and 
the series exhibits moderate volatility as shown in figure 4. 
 
 
Figure 4: Monthly GDP Series 
 

20000

22000

24000

26000

28000

82 84 86 88 90 92 94 96  
Monthly GDP estimates in mio CHF. The corresponding figures are displayed 
in appendix D. 
 
 
Can this extensive selection procedure be confirmed by first 
interpolating annual to quarterly data and then comparing the 
resulting quarterly series with the official GDP estimates? If yes, 
then we would have a very handy tool for the evaluation of 
competing interpolation models. 
 
Of course, the underlying assumption that the best annual 
interpolation model is also the best quarterly one is strong, but if 
this criterion does well, it could be used as suggestive evidence in 
similar problems. Moreover, there is no reason to think that the 
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frequency change has a fundamental impact on the performance of 
the models20. 
 
Surprisingly, the results show that it is not always the case that 
models with highest likelihood are the best interpolating models at 
the lower frequency. Within the GLS-based class just model 2c 
confirms our expectations. For all models with a pattern, applying 
this method makes no sense. Therefore, we conclude that this 
approach may be used as an indicator only but certainly not as a 
selection criterion. 
 
 
6. Conclusion 
 
The goal of this paper is to evaluate alternative interpolation 
models for Swiss GDP and to produce a monthly deseasonalized 
real GDP available for researchers and practitioners. We use a 
Kalman filter method which allows formulating a setup that nests 
a wide range of interpolation models in the literature. With respect 
to the nonstationarity and to the usefulness of related series, it is 
difficult to a priori present a clear-cut answer how these issues 
should be considered most suitably. Our results show that treating 
the nonstationarity problem with a second-order AR structure 
(models 1a, 2e) or with a detrending method (models 1b, 2f) is not 
appropriate for Swiss data. These two methods impose 
econometric characteristics on the produced data that cannot be 
carried further for an economic interpretation. The nonstationarity 
correction made by the filter itself (models 1c, 2a-b) seems to be 
sufficient. 
 
Our results further show that in particular cases, related series can 
be useful. In these cases, the evaluation of series backed by 
economic intuition, is based on the comparison of the volatilities 
between the growth rates of the quarterly values and the computed 
monthly series, and some subsidiary indicators. We show that 
including related series does not systematically improve the results 
of the base case as this often generates quite volatile GDP 
estimates. 
 
                                                           
20 Another way to apply this proposal would be to select the model with the best 
AIC for the interpolation from annual data and to see if the same model also 
produces the best AIC for the interpolation of monthly data from quarterly data. 
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Finally, the data does not seem to unambiguously confirm the 
expected long-run hypothesis between the interpolation at a 
monthly and at a quarterly level. A more rigorous econometric 
analysis would be needed if this comparison transgresses short-run 
considerations. 
 
For the interpolation of Swiss GDP we suggest using an approach 
with the four related series exports, imports, retail sales, and non-
utilized construction loans, the latter two of which are proxying 
for consumption and investment which are not monthly recorded. 
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Appendix 
 
A Kalman Filter Algorithm and Log-Likelihood Function 
 
We show the iteration steps of the Kalman filter. We also give the 
log-likelihood function of our system. All our interpolation models 
are based on equations (3) and (4),  111 +++ +′+= tttt RuxCF�� , 

and ttttty �hxa ′+′= ∗+ . The Kalman filter iteration, update, 

prediction, and MSE steps at time U are given by the following 

loop. At time U assume that ++
tyy ,,0 �  are known. The related 

series tx  and ∗
tx  are known up to U��. The predictions done at 

time U�� for U are known: +
−− 11, tttt y

��
� . The corresponding MSE are 

also known: ( )11 −− = tttt MSE �P
�

, and ( )+
−1ttyMSE

�
. 

 
Update step 
 

 ( )( ) ( )+
−

+−+
−−− −+= 1

1

111 tttttttttttt yyyMSE
����

hP��  

 

 ( )( ) 1

1

111 −
−+

−−− ′−= tttttttttttt yMSE PhhPPP �
 

 
Prediction step 
 

 11 ++ ′+= ttttt xC�F�
��

 

 

 ttttttty 11111 ++
∗
++

+
+ ′+′= �hxa

��
 

 
MSE step 
 

 ( ) RRQFFPP� ′+′== ++ ttttttMSE 11

�
 

 
 ( ) 1111 +++

+
+ ′= ttttttyMSE hPh�
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Log-likelihood function 
Each observation +

ty is normally distributed: 

 

 ( ) ( )ttttttttttttt Nyyy hPh�hxaxxxx 111110 ,~,,,,,,,, −−
∗∗∗+

−
++ ′′+′

�
���  

 
The log-likelihood function for the whole sample is the following 
expression: 
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B Chow and Lin Regression21 
 
We show hereafter the Chow and Lin regression model. Chow and 
Lin assume a true model for the monthly GDP explained by M 

related series given in matrix notation for the whole sample of 6 

observations: uX�y +=  where [ ]uuV ′= E  is the variance-

covariance matrix of the error terms. With help of [ ]TT ×3  

matrix 


 ′⊗= 3
33

1
iIC TD , they transform this true model to match 

the quarterly observed GDP. The quarterly vector can thus be 
expressed: 
 
 +++ +=+== u�XuCX�CyCy DDD  
 
                                                           
21 We do not write GLS subscripts. 
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where DDE CVCVuu ′==



 ′ +++  and where +X  is a [ ]lT ×3  

matrix with quarterly average of related series. Chow and Lin look 
then for a [ ]3TT ×  matrix A  that fill s the gap between quarterly 

and estimated monthly data such that += Ayy� . In this search they 
impose an unbiased estimated monthly series y� : 
 
 [ ] ( )[ ] ( )[ ] 0�XAXuX�u�XAyy =−=−−+=− +++ EEE

�
 

 
implying that 0XAX =−+  and giving then an expression for the 
difference between the true monthly series and the estimated one: 

uAuyy −=− +�
. To find the optimal matrix A  they minimize, 

under the constraint of unbiasedness, the trace of the variance-
covariance matrix [ ]y�V , so minimizing the sum of all the 

variances corresponding to each ‘observation’ . The [ ]y�V  is the 
following equation. 
 

 ( )[ ] [ ] [ ]uuAuuuuAAuuAyy ′+′



 ′−′−′



 ′=− ++++ EEEEE 2�

 

 

 ( )[ ] VAVAVAAVyy +′−−′=− +++ ""2�
E  

 
They minimize with respect to A  the following Lagrange function 
with help of a [ ]Tl ×  Lagrange multiplier M′ : 
 

 ( ) ( )( )XAXMVAVAVAAV −′−+′−−′= ++++ trtrL ""
2
1
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2

1
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yielding A . 
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The y�  is then given by the following fitted values: += Ayy� . 
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The monthly series is computed by the third of all the elements of 
the vector y� . 
 
 
C Comparison of Log-Likelihood Functions 
 
In a slightly different notation, the Kalman filter presented in 
section ‘Models with Related Series and without AR Structure’ 
yields the same likelihood as Chow and Lin. This shows that the 
results are the same for both methods. We assume this structural 
equation ttt uy +′= cx , for Tt ,,1�= , where V �  is iid and 

( ) 22
utuE σ= . 

 

We define state vector 
















′−
′−
′−

=

−−

−−

cx

cx

cx

�

22

11

tt

tt

tt

t

y

y

y

, state equation 
















=

−

+

+

1

1

31

t

t

t

t

u

u

u
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where ∑
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t
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2

xx , ( )000=′th  and 0a =′t  for 

1,,7,5,4,2,1 −= Tt � , and ( )111=′th  and ca ′=′t  for 
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Tt ,,9,6,3 �= . We further assume 
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Finally, the log-likelihood function for this Kalman filter is  
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Chow and Lin assume the following regression +++ += u�Xy  or 

for each observation +++ +′= ttt uy x�  meaning that quarterly 

observations are ( )2, +
+′

utN σx� . The log-likelihood function for this 

Chow and Lin regression is 
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This equation is equivalent to the Kalman filter log-likelihood 

with c� ′=′ 3 , ∗+ = tt xx
3

1
, and the variance of quarterly observations 

2
+u

σ  equals three times the variance of monthly observations 2
uσ . 
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D Monthly GDP Estimates 
 

 
 
 

Jan-81 21563 Apr-83 21337 Jul-85 23286 Oct-87 23888 
Feb-81 21503 May-83 21730 Aug-85 23230 Nov-87 23580 
Mar-81 21461 Jun-83 21793 Sep-85 23165 Dec-87 24213 

 64527  64860  69681  71681 
Apr-81 22043 Jul-83 21670 Oct-85 23265 Jan-88 23706 
May-81 21932 Aug-83 21666 Nov-85 23615 Feb-88 23872 
Jun-81 22003 Sep-83 22104 Dec-85 23297 Mar-88 24615 

 65978  65440  70177  72193 
Jul-81 22082 Oct-83 21986 Jan-86 23504 Apr-88 24270 

Aug-81 22157 Nov-83 22066 Feb-86 23235 May-88 24336 
Sep-81 22141 Dec-83 21876 Mar-86 23751 Jun-88 24389 

 66380  65928  70490  72995 
Oct-81 22158 Jan-84 22130 Apr-86 23255 Jul-88 24449 
Nov-81 21864 Feb-84 22096 May-86 23496 Aug-88 24622 
Dec-81 22124 Mar-84 22178 Jun-86 23495 Sep-88 24639 

 66146  66404  70246  73710 
Jan-82 21867 Apr-84 22314 Jul-86 23501 Oct-88 24505 
Feb-82 21802 May-84 22267 Aug-86 23419 Nov-88 24484 
Mar-82 21843 Jun-84 22175 Sep-86 23661 Dec-88 25295 

 65512  66756  70581  74284 
Apr-82 21793 Jul-84 22275 Oct-86 23688 Jan-89 24823 
May-82 21650 Aug-84 22734 Nov-86 23770 Feb-89 24877 
Jun-82 21582 Sep-84 22359 Dec-86 23508 Mar-89 25400 

 65025  67368  70966  75100 
Jul-82 21547 Oct-84 22553 Jan-87 23824 Apr-89 25453 

Aug-82 21577 Nov-84 22558 Feb-87 23811 May-89 25112 
Sep-82 21417 Dec-84 22887 Mar-87 23310 Jun-89 25541 

 64541  67998  70945  76106 
Oct-82 21606 Jan-85 22616 Apr-87 23639 Jul-89 25723 
Nov-82 21333 Feb-85 22898 May-87 23334 Aug-89 25329 
Dec-82 21400 Mar-85 23248 Jun-87 23441 Sep-89 25842 

 64339  68762  70414  76894 
Jan-83 21575 Apr-85 23229 Jul-87 23553 Oct-89 25490 
Feb-83 21259 May-85 22877 Aug-87 24176 Nov-89 25936 
Mar-83 21575 Jun-85 22985 Sep-87 23613 Dec-89 26363 

 64409  69091  71342  77789 
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Jan-90 25861 Jan-92 26642 Jan-94 26317 Jan-96 26551 
Feb-90 26420 Feb-92 26679 Feb-94 25790 Feb-96 26342 
Mar-90 26398 Mar-92 26515 Mar-94 26406 Mar-96 26399 

 78679  79836  78513  79292 
Apr-90 26368 Apr-92 26386 Apr-94 25901 Apr-96 26154 
May-90 26359 May-92 26130 May-94 26142 May-96 26539 
Jun-90 26634 Jun-92 26344 Jun-94 26216 Jun-96 26422 

 79361  78860  78259  79115 
Jul-90 26580 Jul-92 25961 Jul-94 26102 Jul-96 26327 

Aug-90 26603 Aug-92 26383 Aug-94 26281 Aug-96 26494 
Sep-90 26424 Sep-92 25909 Sep-94 26368 Sep-96 26095 

 79607  78253  78751  78916 
Oct-90 26361 Oct-92 26120 Oct-94 26155 Oct-96 26116 
Nov-90 26774 Nov-92 25801 Nov-94 26303 Nov-96 26430 
Dec-90 26582 Dec-92 25621 Dec-94 26557 Dec-96 26265 

 79717  77542  79015  78811 
Jan-91 26663 Jan-93 26336 Jan-95 26486 Jan-97 25906 
Feb-91 26418 Feb-93 26146 Feb-95 26386 Feb-97 26328 
Mar-91 26499 Mar-93 26070 Mar-95 26254 Mar-97 26771 

 79580  78552  79126  79005 
Apr-91 26233 Apr-93 26208 Apr-95 26179 Apr-97 26748 
May-91 26261 May-93 26137 May-95 26238 May-97 26459 
Jun-91 25869 Jun-93 25900 Jun-95 26544 Jun-97 26549 

 78363  78245  78961  79756 
Jul-91 26128 Jul-93 26251 Jul-95 26271 Jul-97 26792 

Aug-91 26151 Aug-93 25966 Aug-95 26296 Aug-97 26834 
Sep-91 26234 Sep-93 25892 Sep-95 26475 Sep-97 26566 

 78513  78109  79042  80192 
Oct-91 26237 Oct-93 26364 Oct-95 26098 Oct-97 27119 
Nov-91 26355 Nov-93 25982 Nov-95 26486 Nov-97 26556 
Dec-91 25840 Dec-93 25667 Dec-95 26547 Dec-97 26936 

 78432  78013  79131  80611 


